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A central theorem in singular learning theory (SLT) is that every singular analytic statistical model
can be put into a standard form. In this form, the learning coefficients of the model can be read off
immediately.

In the SLT literature, a common example given is that regular models of dimension d have learning
coefficient d/2with multiplicity 1. This is usually stated without further details, but this fact is not
entirely obvious. It can be obtained in multiple ways, including by putting the regular model into
standard form.

As an exercise in understanding the standard form theorem better, in this article we perform a
blow-up to resolve the regular model into standard form. Once in standard form, we can easily
obtain the learning coefficient d/2 and its multiplicity 1.

1 Singular Standard Form
Let (Ω,F,µ) be a probability space, and let P(Ω) be the set of probability density functions on
Ω. For our purposes, a (Bayesian) statistical model for Ω is a triple (W,p,ϕ), where W ⊂ Rd is a
measurable set of parameters, p : W → P(Ω), and ϕ ∈ P(W) is a prior distribution on W.

Singular learning theory is concerned with models that satisfy some analyticity conditions that
allow us to apply ideas from algebraic geometry. We’ll call a statistical model analytic if:

1. W is a semi-analytic subset of Rd, meaning there exists analytic functions f1, ..., fk : Rd → R
such that

W = {w ∈ Rd | fi(w) ⩾ 0 ∀i = 1, ...,k}.

2. For any two points w1,w2 ∈ W, the Kullback-Leibler divergence

K(w1|w2) := K(p(x|w1)|p(x|w2) (1.1)

is analytic in both parameters.

3. The prior can be decomposed as ϕ = ϕsϕa, where ϕs is smooth with 0 < ϕs < ∞ and ϕa is
analytic with 0 ⩽ ϕa < ∞.

One major result in SLT is the standard form theorem of Watanabe’s, which says that every
statistical model can be reparametrized into a standard form. In his textbook Algebraic Geometry
and Statistical Learning Theory, Watanabe calls this Main Theorem 1 [Wat09].

Two pieces of notation: First, for any subset I ⊂ {1, ...,d}, any vector v = (v1, ..., vd) ∈ Rd, and any
vector of integers (k1, ...,kd), let

vkI

I :=
∏
i∈I

vki

i .

Second, for any choice of density q(x) ∈ P(Ω), define Kq(w) : W → R as

Kq(w) = K(p(x|w) | q(x)).
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Definition 1 (Standard Form). Let I = {1, ...,d}. An analytic statistical model (W,p,ϕ) is in
standard form (with respect to q) if there exists a basis w = (w1, ..,wd) of Rd and integers
(ki,hi)

d
i=1, such that:

Kq(w) = w2kI

I + O(w2kI+1
I ) and ϕ(w) = ϕs(w) · |whI

I |,

where ϕs(w) is smooth and ϕs(w) ̸= 0 everywhere.

Watanabe proved that by using Hironaka’s Theorem for the resolution of singularities in
characteristic zero, any statistical model can be transformed into standard form by applying a
birational map. One reason for doing this is to compute the learning coefficient of the model
using the following theorem:

Theorem 1. Suppose a model is in standard form with respect to q with integers (ki,hi)
d
i=1.

Then the learning coefficient of the model w.r.t. q is

min
i=1,...,d

hi + 1
2ki

,

with multiplicity given by the number of times the minimum is achieved.
Proof. [Mus11, Theorem 1.1]

It is well-known that regular statisticalmodels have learning coefficients dimW/2withmultiplicity
1. This can be seen without applying the standard form theorem, but it is natural to ask what the
process of computing the learning coefficients by resolving a regular model looks like.

For this article, a regular statistical model (W,p,ϕ) means:

1. W is a d-dimensional submanifold of Rd,

2. For every x ∈ Ω, the function p(x|w) is smooth in w.

3. The map p : W → P(Ω) is injective.

4. The Fisher information I(w) is positive-definite everywhere.

5. The prior satisfies 0 < ϕ(w) < ∞.

2 Projective Space
Let us briefly detour from statistics to introduce key facts about projective space that we need to
perform a blow-up. The projective space P(Rd) is the set of lines through the origin in Rd. It can
be expressed in many ways, but here is a simple one: for x, x ′ ∈ Rd define an equivalence relation
x ∼ x ′ if there exists λ ̸= 0 ∈ R such that x ′ = λx. Then P(Rd) = (Rd \ 0⃗)/ ∼.

Let (z1, ..., zd) be a basis for Rd. Then since P(Rd) = (Rd \ 0⃗)/ ∼, any point z ∈ P(R)d can be
represented by a point (z1, ...zd) ∈ Rd. Traditionally one writes

z = [z1 : z2 : · · · : zd]

and refers to this as homogeneous co-ordinates for z. Be careful: by definition, for any λ ̸= 0 ∈ R,

[z1 : z2 : · · · : zd] = [λz1 : λz2 : · · · : λzd],

so the choice of homogeneous co-ordinates for a point is only unique up to scalar multiplication.
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Next lets see that projective space P(Rd) is a (d − 1)-dimensional smooth manifold. For each i =
1, ...,d, define an open set Ui ⊂ P(Rd) as

Ui = {[z1 : z2 : · · · : zd] ∈ P(R)d | zi ̸= 0}.

Then we have a bijective chart t(i) : Ui → Rd−1 by

t(i)([z1 : · · · zd]) = (zj/zi)j̸=i =

(
z1
zi
, · · · zd

zi

)
.

The · · · in the last expression skips the ith entry zi/zi; i.e. t
(i)
j = zj/zi for j ̸= i. The collection

{(Ui, t(i))}di=1 defines an atlas of co-ordinate charts that cover P(Rd), giving P(Rd) a smooth
manifold structure. These charts are called the standard charts for projective space. If you’re
learning geometry, it is a good and common exercise to check that the transition functions of
these charts are indeed smooth.

In the case d = 2, the manifold R(P2) is called the real projective line and it is diffeomorphic to the
circle S1. I want to treat it a bit differently, as this treatment will let us draw a picture of a blow-up
in the next section. Let z = [z1 : z2]. The set U1, where z1 ̸= 0, covers every point in R(P2) except
the point z = [0 : 1]. The chart t(1) : U1 → R is

t(1)([z1 : z2]) = z2/z1,

so at the one point where z1 = 0, we simply define t(1)([0 : 1]) = ∞. This defines a bijective map
R(P2) → R ∪ {∞} that lets us identify R(P2) = R ∪ {∞}.

There is geometric intuition for this identification. Recall that R(P2) is defined to be the set of lines
through the origin in R2. If we treat the vertical line x = 0 as having a slope of ∞, then every line
is given by an equation y = mx, for some m ∈ R ∪ {∞}. Thus identifying R(P2) = R2 ∪ {∞} is
parametrizing lines in R2 by their slope.

3 Resolving a Regular Model
LetM = (W,p,ϕ) be a regular analytic statistical model for a probability spaceΩ. Fix a probability
density q ∈ P(Ω), and suppose that there is w0 ∈ W such that p(x|w0) = q. Since M is regular,
thisw0 must be the unique global minimum of Kq(w), satisfying Kq(w0) = 0. It is well-known that
the Hessian of a regular model is the Fisher information. As w0 is the global minimum of Kq(w),
∇Kq(w) = 0. Using these facts, the Taylor expansion of Kq(w) near w0 is

Kq(w) = (w−w0)
T I(w)(w−w0) + O(w3).

By choosing a basis for Rd that diagonalizes I(w) and translating it by −w0 we can write this as

Kq(w) =

d∑
i=1

αiw
2
i + O(w3),

where αi are the eigenvalues of I(w), which are positive as M is regular.

This model is not in standard form, but we can use a blow-up to reparametrize it into standard
form. The blow-up of W at the point w0 is:

Blw0W =
{
((w1, ...,wn, [z1 : ... : zn]) ∈ W × P(Rd)

∣∣ wizj = wjzi,∀i, j
}
.

This is a d-dimensional smooth manifold, and the standard charts for R(Pd) give us charts for
Blw0W. Let Vi ⊂ Blw0W be

Vi = {(w, z) ∈ Blw0W | zi ̸= 0} , (3.1)
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(a) One perspective. (b) Another perspective.

Figure 1: Two perspectives of Blw0R2 ∩ [−5, 5]3, plotted using SageMath. An
interactive version of this plot is available at kaleb.ruscitti.ca/blowup.

and let s(i)(w, z) be the vector in Rd with

s(i) =

{
t
(i)
j =

zj

zi
, j ̸= i,

wi, j = i.
(3.2)

The collection {(Vi, s(i))di=1} defines an atlas for Blw0W.

To get a better feeling for the blow-up, lets fix d = 2 and W = R2, then take a moment to draw a
picture of Blw0R2. For d = 2,

Blw0W =
{
(w1,w2, [z1 : z2]) ∈ W × P(R2)

∣∣ w1z2 = w2z1
}
,

and there are two charts, V1 ∼= R2 with co-ordinates (w1, z2/z1) and V2 ∼= R2 with co-ordinates
(w2, z1/z2). Using our identification of P(R2) = R ∪ {∞}, we can draw a picture of almost all of
Blw0R2 by dropping only the points (w, z) ∈ Blw0R2 with z = ∞. We call such points "points at
infinity". Now we have (

Blw0R
2 − {points at infinity}

)
⊂ R3,

so we can draw this portion of Blw0R2 in a 3D plot! Specifically, using co-ordinates (w1,w2, t),
where t = z2/z1, we have that w1z2 = w2z1 becomes w1t = w2. Therefore, Blw0R2 is the surface
defined by the equation w1t = w2 inside R3 (Figure 1).

Remember, this picture is missing one small bit of Blw0R2. The points at infinity are points with
z1 = 0, whichmust satisfyw1z2 = w2z1 = 0. There is anR-worth of these points, given by the choice
ofw2. So our picture is missing a line at infinity. The picture is called one affine slice of the blow-up.
There is another affine slice corresponding to the other chart V2 for Blw0W. In general dimension
d, there will be d-many standard affine slices of Blw0W, and each slice misses a (d−1)-dimensional
hyperplane at infinity.

The blow-up comes with an analytic map:

π : Blw0W → W, (w, z) 7→ w.

Using this map, we can define a model M̃ as a reparametrization of M. First, let π∗p : Blw0W →
P(Ω) be

(π∗p)(x|w, z) := p(x|π(w, z)) = p(x|w).
Second, let π∗ϕ ∈ P(Blw0W) be

(π∗ϕ)(w, z) = ϕ(π(w, z)) · |det Jπ(w, z)| = ϕ(w) · |det Jπ(w, z)|,
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where Jπ is the Jacobian matrix of π. Then M̃ = (Blw0W,π∗p,π∗ϕ) is an analytic statistical model,
and our goal is to show that it is in standard form.

For the original modelMwe saw that the Kullback-Leibler divergence is approximately

Kq(w) =

d∑
i=1

αiw
2
i,

where αi > 0. Our new model M̃ has Kullback-Leibler π∗Kq(w, z) = Kq(π(w, z)), however we
want to write this in our co-ordinate charts for Blw0W. On the open set Vi with co-ordinates s(i) =
(wi, t(i)) we have

π∗Kq(wi, t(i))|Vi
= αiw

2
i +

∑
j̸=i

αj(t
(i)
j wi)

2 = w2
i

αi +
∑
j̸=i

αj(t
(i)
j )2

 .

To see that this is in standard form, we replace wi with ui,

ui := wi

√
αi +

∑
j̸=1

αj(t
(i)
j )2.

This is always well-defined because αj > 0 for every j = 1, ...,d. In (ui, t(i)) co-ordinates, we have

π∗Kq(ui, t(i))|Vi
= u2

i.

Thus, the Kullback-Leibler divergence of M̃ is in standard form.

Next, we need to check that the prior is in standard form. By assumption 0 < ϕ(w) < ∞
everywhere on W, and by definition

π∗ϕ(w, z) = ϕ(π(w, z)) · |det Jπ(w, z)|.

So we need to compute Jπ(w, z). In the co-ordinate chart Vi, we have

Jπ(wi, t(i))|Vi
=


∂wi

∂wi

∂
∂wi

(wit
(i)
1 ) · · · ∂

∂wi
(wit

(i)
d )

∂wi

∂t
(i)
1

∂

∂t
(i)
1

(wit
(i)
1 ) · · · ∂

∂t1
(wit

(i)
d )

· · · · · · · · · · · ·
∂wi

∂t
(i)
d

∂

∂t
(i)
d

(wit
(i)
1 ) · · · ∂

∂t
(i)
d

(wit
(i)
d )



=


1 t

(i)
1 · · · t

(i)
d

0 wi · · · 0
· · · · · · · · · · · ·
0 0 · · · wi

 .

This is upper triangular, so its determinant is the product of its diagonal entries: det Jπ(wi, ti)|Vi
=

wd−1
i . Therefore the prior on Blw0W is

π∗ϕ(wi, t(i))|Vi
= ϕ(w) · |wd−1

i |.

However for a model to be in standard form, we need to express the Kullback-Leibler divergence
and the prior in the same co-ordinates. Therefore, we want to re-write the prior using the co-
ordinateui from our discussion of the Kullback-Leibler divergence. Let (αi+

∑
j̸=1 αj(t

(i)
j )2)−1/2 =:

a(t(i)), so that ui = wi/a(t
(i)). Since the eigenvalues αj are positive, a(t(i)) ̸= 0, so this is well

defined. In co-ordinates (ui, t(i)) for Vi, we have

π∗ϕ(ui, t(i)) = ϕ(π(ui, t(i))) · a(t(i))d−1 · |ud−1
i |,

π∗Kq(ui, t(i)) = u2
i.
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Thus we can see that the model M̃ is in standard form. Moreover, we can read off that the integers
(kj,hj) which determine the learning coefficient are

kj =

{
1, j = i,
0, else

hj =

{
d− 1, j = i,
0, else.

(3.3)

Therefore, using Theorem 1 we obtain that the learning coefficient is λ = d/2 and its multiplicity
ism = 1.
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